Поиск презентаций. Туманность межзвездное облако, состоящее из пыли, газа и плазмы, выделяющееся своим излучением или поглощением по сравнению с окружающей его межзвёздной

Идея о том, что наша Галактика не заключает в себя весь звездный мир и существуют другие, сходные с ней звездные системы, впервые была высказана учеными и философами в середине 18 в. (Э.Сведенборг в Швеции,И.Кант в Германии, Т.Райт в Англии). На небе другие звездные системы выглядят как далекие гигантские скопления звезд. Естественно было предположить, что такими «внешними» галактиками являются светлые туманные пятна низкой яркости, открытые астрономами на небе, когда в их распоряжении появились достаточно крупные телескопы. Английский астроном В.Гершель в конце 18 в. смог с помощью построенного им большого телескопа первым «разложить» на отдельные звезды некоторые из таких туманностей. Впоследствии оказалось, что они являются звездными скоплениями, которые принадлежат нашей Галактике. Другие же туманности (включая большую Туманность Андромеды) не разрешались на звезды, и было неизвестно, относятся ли они к нашей Галактике или лежат за ее пределами. Позднее, в конце 19 в., выяснилось, что природа наблюдаемых светлых пятен вообще не одинакова, некоторые из них, действительно, могут быть далекими звездными скоплениями, а другие имеют спектр, характерный для газа, а не для звезд, а, значит, являются облаками нагретого межзвездного газа.

В середине 19 в. было впервые обнаружено наличие спиральной структуры у некоторых туманностей (лорд Росс, Великобритания). Но их звездная природа еще долгое время оставалась недоказанной.

На помощь пришла фотография. В начале 20 в. американскому астроному Дж.Ричи с помощью нового телескопа с диаметром 1,5 м на обсерватории Маунт Вильсон впервые удалось, используя длинные экспозиции, получить фотографии нескольких туманных пятен (включая туманности в Андромеде и в Треугольнике) такого высокого качества, что на них можно было рассмотреть изображения большого числа очень слабых звезд. Но поскольку никто не мог сказать, к каким типам принадлежат эти звезды, открытие Ричи не решило вопрос о расстоянии, а значит, и о природе исследуемых объектов. Окончательно этот проблема была решена в 1924, когда американский астроном Э.Хаббл , проводя наблюдения на новом инструменте – 2,5-метровом рефлекторе, обнаружил в туманностях Андромеды и Треугольника звезды знакомого типа – цефеиды (см . ЗВЕЗДЫ).

Расстояние до этих переменных звезд астрономы уже умели определять по характерной для них зависимости «период–светимость». И хотя впоследствии выяснилось, что полученные Хабблом расстояния более чем вдвое меньше действительных, его оценки убедительно показали, что наблюдавшиеся звездные системы находятся далеко за пределами нашей Галактики. С этого времени стало возможным говорить о рождении нового раздела науки – внегалактической астрономии.

Невооруженному глазу доступно всего три галактики – туманность Андромеды в северном полушарии и Большое и Малое МагеллановыОблака – в южном. Магеллановы облака являются самыми близкими к нам галактиками: расстояние до них ок. 150 тыс. св. лет.

Пространство между галактиками прозрачно, что позволяет наблюдать очень далекие объекты. Современным крупным телескопам потенциально доступны для наблюдения более миллиарда далеких галактик, однако, большинство из них едва заметны и видны лишь как крошечные пятнышки размером в несколько угловых секунд, часто по виду с трудом отличимые от слабых звезд нашей Галактики. Поэтому современные представления о галактиках основаны на изучении нескольких десятков тысяч сравнительно близких объектов, которые могут быть исследованы более детально.

Первый каталог, содержащий информацию о положении на небе более ста туманных пятен, был составлен французским астрономом, специализировавшимся на поиске комет, Шарлем Мессье в 18 в. Большинство зарегистрированных им пятен впоследствии оказалось галактиками, остальные – светлыми газовыми туманностями и звездными скоплениями нашей Галактики. Объекты Мессье до сих пор обозначаются номерами его каталога (например, туманность Андромеды имеет обозначение М31). Одним из более обширных каталогов, номерами из которых часто обозначают галактики, является New General Catalogue (NGC), основы которого заложили английские астрономы Вильям Гершель и его сын Джон Гершель. Вместе с добавлением к нему (Index Catalogues, или IC) каталог NGC содержит координаты более 13 тыс. объектов.

Работа по составлению более подробных каталогов галактик была существенно расширена несколькими изданиями Реферативного каталога ярких галактик Ж. де Вокулера с сотрудниками. Более обширные, но менее информативные каталоги, основанные на просмотре фотографических пластинок Обзора неба, полученных на 1,2-метровой камере Шмидта Паломарской обсерватории, были опубликованы еще ранее Ф.Цвикки в США (Каталог Цвикки), П.Нильсоном в Швеции (каталог UGC) и Б.А.Воронцовым-Вельяминовым в СССР (Морфологический каталог галактик). Они содержат координаты, звездные величины, угловые размеры и некоторые другие параметры для нескольких десятков тысяч галактик приблизительно до 15-й звездной величины. Позднее был проведен аналогичный обзор и для южного неба – по фотографиям, полученным с помощью широкоугольных камер Шмидта Европейской южной обсерватории в Чили и в Австралии. Со временем появились многочисленные более специализированные атласы и каталоги галактик, обладающих теми или иными свойствами, в том числе составленные по наблюдениям в радио, рентгеновском или инфракрасном диапазонах спектра.

Одна и та же галактика под различными номерами может входить в разные каталоги. За исключением небольшого числа объектов, галактики не имеют собственных имен. Каждой соответствует цифровое обозначение, перед которым, как правило, стоит аббревиатура (сокращенное до нескольких букв название) соответствующего каталога. Обозначения галактик по разным каталогам вместе с обширной информацией об их наблюдаемых свойствах можно найти, например, в базе данных НАСА по внегалактическим объектам на сайте.

ОБЩИЕ СВОЙСТВА ГАЛАКТИК

Галактики – сложные по составу и структуре системы. Самые маленькие из них по числу звезд сопоставимы с большими звездными скоплениями в нашей Галактике, однако по размерам они значительно их превосходят: диаметр даже самых маленьких галактик составляет несколько тысяч св. лет. Размеры гигантских галактик в сотни раз больше.

Галактики не имеют резких границ, их яркость постепенно спадает с удалением от центра наружу, поэтому понятие размера не является строго определенным. Видимый размер галактик зависит от возможности телескопа выделить их внешние области, имеющие низкую яркость, на фоне свечения ночного неба, которое никогда не бывает абсолютно черным. В его слабом свете «тонут» периферийные части галактик. Современная техника позволяет регистрировать области галактик с яркостью менее 1% от яркости ночного неба. Для объективной оценки размеров галактик за их границу условно принимается определенный уровень поверхностной яркости, или, как говорят, определенная изофота (так называют линию, вдоль которой поверхностная яркость имеет постоянное значение). Часто в качестве такого порогового значения яркости принимается 25 звездная величина с квадратной угловой секунды в фотографической области спектра. Соответствующая ей яркость в десятки раз ниже яркости ночного, ничем не «подсвеченного» неба. Яркость центральных областей галактик может быть в несколько сотен раз выше порогового значения.

Светимость галактик (т.е. полная мощность излучения) меняется в еще больших пределах, чем их размер – от нескольких миллионов светимостей Солнца (L c) у самых маленьких галактик до нескольких сотен миллиардов L c для галактик-гигантов. Эта величина примерно соответствует общему количеству звезд в галактике или ее полной массе. Светимость галактик такого типа как наша Галактика составляет несколько десятков миллиардов светимостей Солнца. Однако у одной и той же галактики она может сильно различаться в зависимости от диапазона спектра, в котором ведется наблюдение. Поэтому очень важную роль в изучении галактик играют наблюдения в различных интервалах длин волн. Вид галактик неузнаваемо меняется при переходе от одного спектрального диапазона к другому – от радиоволн к гамма-лучам. Это связано с тем, что основной вклад в излучение галактик на различных длинах волн вносят объекты различной природы.


Таблица: Спектральный диапазон
Спектральный диапазон Объекты, дающие основной вклад в излучение галактики Примечание
Гамма Активные ядра некоторых галактик. Источники, дающие одиночные короткие всплески излучения, по-видимому, связанные с компактными звездами (нейтронными звездами, черными дырами).. Излучение галактик в этом диапазоне редко наблюдается. Оно регистрируется только за пределом атмосферы.
Рентгеновский Горячий газ, заполняющий галактику. Активные ядра некоторых галактик. Отдельные источники, связанные с тесными двойными звездными системами с перетеканием вещества на компактную звезду. Излучение принимается только за пределом атмосферы.
Ультрафиолетовый Наиболее горячие звезды (в галактиках, где происходит звездообразование, это – голубые сверхгиганты). Активные ядра некоторых галактик. Излучение особенно сильно в галактиках с интенсивным звездообразованием.
Область видимого света Звезды с различной температурой. Светлые газовые туманности. В этом диапазоне большинство галактик излучает основную энергию.
Ближний инфракрасный Наиболее холодные звезды (красные сверхгиганты, красные гиганты, красные карлики). Светимость галактики в этом диапазоне наиболее точно характеризует полную массу содержащихся в ней звезд.
Далекий инфракрасный Межзвездная пыль, нагретая излучением звезд. Активные ядра и околоядерные области некоторых галактик. Излучение особенно сильно в галактиках с интенсивным звездообразованием. Регистрируется только за пределом атмосферы.
Радио Высокоэнергичные электроны, изучающие в межзвездном магнитном поле. Холодный (атомарный, молекулярный) межзвездный газ, излучающий на определенных частотах. Активные ядра некоторых галактик. Излучение дает основную информацию о холодном межзвездном газе галактики и о магнитных полях в межзвездном пространстве.

Массы галактик, как и их светимости, также могут различаться на несколько порядков – от значений, характерных для крупных шаровых звездных скоплений (миллионы масс Солнца) до тысячи миллиардов масс Солнца у некоторых эллиптических галактиках.

Галактики – это прежде всего звездные системы; именно со звездами связано их оптическое излучение. Пространственно звезды образуют два основных структурных компонента галактики, как бы вложенных один в другой: быстро вращающийся звездный диск, толщина которого обычно составляет 1–2 тыс. св. лет, и медленно вращающуюся сферическую (или сфероидальную) составляющую, яркость которой концентрируется не к плоскости диска, а к центру галактики. Внутренняя, наиболее яркая часть сферодального компонента называется балдж (от англ. bulge – вздутие), а внешняя часть низкой яркости – звездное гало. В центральной части массивных галактик часто выделяется небольшой и быстро вращающийся околоядерный диск размером порядка тысячи св.лет, который также состоит из звезд и газа. Такая структурность галактик отражает сложный многоступенчатый характер их формирования. Есть галактики, в которых наблюдается только один из двух основных компонентов: диск или сфероид.

Помимо звезд с разными массами, химическим составом и возрастом, каждая галактика содержит разреженную и слегка намагниченную межзвездную среду (газ и пыль), пронизываемую высокоэнергичными частицами (космическими лучами). Относительная масса, приходящаяся на долю межзвездной среды, как и мощность радиоизлучения, также относятся к важнейшим наблюдаемым характеристикам галактик. Полная масса межзвездного вещества сильно меняется от одной галактики к другой и обычно составляет от нескольких десятых долей процента до 50% суммарной массы звезд (в редких случаях газ может даже преобладать по массе над звездами). Содержание газа в галактике – это очень важная характеристика, от которой во многом зависит активность происходящих в галактиках процессов и, прежде всего, – процесс образования звезд.

МОРФОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ И СТРУКТУРА ГАЛАКТИК

Многообразие наблюдаемых форм галактик вызвало у астрономов желание объединить похожие объекты и разбить галактики на ряд классов по их внешнему виду (по морфологии). В основе наиболее часто используемой морфологической классификации галактик лежит схема, предложенная Э.Хабблом в 1925 и развитая им в 1936. Галактики разделяются на несколько основных классов: эллиптические (Е), спиральные (S) линзовидные (S0) и неправильные (Irr).

E-галактики выглядят как эллиптические или овальные пятна, не слишком сильно вытянутые, яркость внутри которых плавно уменьшается с расстоянием от центра. Заметный диск в них отсутствует, хотя точные фотометрические измерения в некоторых случаях позволяют заподозрить его существование. Следы пыли или газа в них также редко встречаются. По степени сплюснутости Е-галактики разделяются на несколько подклассов – от Е0 (круглые) до Е6 (вытянутые). Цифра, стоящая после буквы «Е», характеризует видимую сплюснутость галактики. Она примерно равна отношению 10·(a–b)/a, где a и b – соответственно большая и малая оси эллипса, описывающего галактику.

В спиральных (S) галактиках выделяется центральное сгущение звезд – «балдж», и протяженный звездный диск, в котором (если он только не повернут к наблюдателю «ребром») наблюдаются спиральные ветви. Различают спиральные галактики без перемычки и с перемычкой. В последнем случае в центральной части галактики звезды образуют вытянутую структуру – бар, за пределами которого начинаются спиральные ветви. Такие галактики обозначаются SB. На фотографиях, полученных в лучах видимой части спектра, бары заметны не менее чем у трети всех S-галактик. В инфракрасных лучах их можно выявить у еще большего числа галактик.


Спиральные галактики также делятся на подклассы: Sa, Sb, Sc, Sd, а для галактик с баром – SBa, SBb, SBc, SBd. Вдоль последовательности от а до d уменьшается яркость балджа, а спиральные ветви становятся все более клочковатыми, более «развернутыми» и менее четкими по форме. У спиральных галактик, наблюдаемых с ребра, спиральные рукава не видны, но тип галактики можно установить по относительной яркости балджа и диска.

Между типами Е и S находится тип линзовидных галактик (S0). Как и S-галактики, они обладают звездным диском и балджем, но в них нет спиральных ветвей (хотя бар может быть). Считается, что это галактики, которые в далеком прошлом были спиральными, но к настоящему времени почти полностью «потеряли» или израсходовали межзвездный газ, а вместе с ним – и способность образовывать яркие спиральные ветви.



Irr-галактики не обладают упорядоченной структурой, в них нет спиральных ветвей, хотя они и содержат внутри себя яркие области различных размеров (как правило, это области интенсивного звездообразования). Балдж в этих галактиках очень мал или совсем отсутствует.

Несколько процентов наблюдаемых галактик не укладывается в описанную классификационную схему, их называют пекулярными. Обычно это галактики, форма которых искажена сильным взаимодействием с соседними галактиками, или же обладающие необычной структурой – например, полярным кольцом, вращающимся в плоскости, перпендикулярной плоскости звездного диска.

В отдельную группу выделяются карликовые галактики – небольшие по размеру, светимость которых в тысячи раз меньше, чем у таких галактик как наша или туманность Андромеды. Это самый многочисленный класс галактик, но из-за низкой светимости их трудно обнаружить на большом расстоянии. Размер карликов обычно не превосходит нескольких килопарсек (см . ПАРСЕК). Среди них также встречаются эллиптические dE, спиральные dS (очень редко), и неправильные (dIrr). Буква d (от английского dwarf – карлик) обозначает принадлежность к карликовым системам.

Было также обнаружено два типа карликов, которые практически не имеют аналогов среди галактик высокой светимости. Это – карликовые сфероидальные системы (dSph) и карликовые голубые компактные галактики (dBCG). Первые похожи на шаровые звездные скопления, увеличенные по объему в тысячи раз. Такие галактики – рекордсмены по низкой поверхностной яркости среди карликов, которая даже во внутренней области галактик часто бывает значительно ниже яркости темного ночного неба. Несколько галактик dSph являются спутниками нашей Галактики. В отличие от них галактики dBCG имеют высокую поверхностную яркость при небольшом линейном размере, а их голубой цвет свидетельствует об интенсивно происходящем звездообразовании. Эти объекты особенно богаты газом и молодым звездами.

Различие меду галактиками разных типов объясняется как различными условиями формирования, так и эволюционными изменениями, произошедшими за миллиарды лет их жизни.

ОЦЕНКА РАССТОЯНИЙ ДО ГАЛАКТИК

Многие характеристики галактик, такие как светимость, линейные размеры, масса газа и звезд, период вращения, невозможно оценить, если не известно расстояния до них. Не существует универсального метода определения расстояний до галактик. Одни способы используются для сравнительно близких, другие – для очень далеких объектов. Наиболее разнообразны методы оценки расстояний до сравнительно близких галактик, в которых можно наблюдать и исследовать отдельные яркие объекты. В качестве таких объектов обычно используются звезды, обладающие высокой светимостью: цефеиды, ярчайшие сверхгиганты или гиганты (их легко различить по цвету), но часто привлекаются и другие образования: звездные скопления (см . ЗВЕЗДЫ), планетарные туманности (см . ТУМАННОСТИ), а также новые звезды в максимуме блеска. Характеристики этих объектов считаются известными, например, по аналогии с подобными объектами нашей Галактики. Самый точный метод связан с использованием цефеид, поскольку светимости этих звезд могут быть получены по хорошо установленной зависимости «период-светимость». Для определения расстояний проводятся фотометрические измерения видимых звездных величин (видимой яркости) объектов в тех или иных галактиках. Затем полученные оценки сопоставляются со светимостью выбранных объектов (или их абсолютной звездной величиной); при этом обязательно вводится поправка на межзвездное поглощение света. В итоге это позволяет оценить, насколько далеко от нас находится галактика.

Если m – видимая звездная величина объекта, исправленная за межзвездное поглощение, а М – его известная абсолютная звездная величина, то логарифм расстояния D до этого объекта, выраженного в мегапарсеках, определяется по формуле:

lg D = 0,2(m – M) – 5.

Для перевода расстояния в миллионы световых лет его значение в мегапарсеках надо умножить на 3,26.

Эффективным оказался и метод определения расстояний не по отдельным объектам, а по оценке параметров мелкой ряби (флуктуаций поверхностной яркости) на видимом изображении галактик, которая обусловлена звездами, не разрешаемыми по отдельности. Но все эти методы достаточно грубы и в применении к индивидуальным галактикам могут давать большую ошибку.

Ярчайшие звезды, пригодные для оценки расстояний, даже с помощью крупнейших телескопов наблюдаются в галактиках, удаленных не более чем на несколько десятков миллионов световых лет (шаровые скопления – несколько дальше). Исключение составляют сверхновые звезды , их можно запечатлеть на любых расстояниях, с которых видны галактики. Их тоже используют для оценки расстояний, однако, они вспыхивают в галактиках редко и не прогнозируемым образом. Поэтому для более далеких галактик разработаны другие подходы. Например, предполагают, что заранее известна светимость или линейный размер галактик определенного типа (это очень грубый метод). Более точные оценки опираются на статистически установленные зависимости, связывающие светимость галактик с какой-либо непосредственно измеряемой величиной, характеризующей галактику (скорость вращения, ширина спектральных линий, принадлежащих звездам, или линий излучения межзвездного газа в радиодиапазоне). Но чаще всего расстояние до далеких галактик определяют по зависимости Хаббла «красное смещение спектральных линий – расстояние». Этот метод (метод красного смещения) основан на измерении сдвига линий в спектре галактики, обусловленного расширением Вселенной. Открытая эмпирически зависимость Хаббла получила надежное обоснование в теории расширяющейся Вселенной. Однако, для калибровки эмпирических зависимостей все равно требуются сравнительно близкие галактики, для которых расстояния находят по индивидуальным объектам. Поэтому определить, во сколько раз одна галактика дальше другой, можно значительно точнее, чем оценить расстояние до каждой из них. В целом, точность оценки расстояний не превышает 10–15%, а в отдельных случаях она значительно ниже.

СОСТАВ ГАЛАКТИК

Межзвездные газ и пыль.

Распределение газа в галактике может сильно отличаться от распределения звезд. Иногда газ прослеживается до значительно больших расстояний от центра галактики, чем звезды, наглядно демонстрируя, что галактика может продолжаться дальше своих оптических границ. Относительная доля массы, приходящаяся на межзвездный газ, в среднем растет от Е- к Irr-галактикам. Для таких галактик, как наша, она составляет несколько процентов, а в Е-галактиках газа содержится менее 0,1% (хотя есть и исключения из этого правила).

Межзвездный газ состоит, в основном, из водорода и гелия с небольшой примесью более тяжелых элементов. Эти тяжелые элементы образуются в звездах и вместе с газом, теряемым звездами, оказываются в межзвездном пространстве. Поэтому содержание тяжелых элементов важно знать для изучения эволюции галактики.

В спиральных галактиках газ концентрируется к плоскости звездного диска, а внутри диска его плотность больше всего в спиральных ветвях, а также в центральной области галактики. Но газ наблюдается и в эллиптических галактиках, где нет ни звездных дисков, ни спиральных ветвей. В этих галактиках газ представляет собой горячую разреженную среду, заполняющую весь объем звездной системы. Из-за высокой температуры (сотни тысяч градусов Кельвина) его можно наблюдать в рентгеновских лучах.

Газ в S- и Irr-галактиках находится в трех основных состояниях, или фазах. Во-первых, это облака холодного (менее 100 К) молекулярного газа. Такой газ не излучает света, но его присутствие позволяет обнаружить радионаблюдения, поскольку различные молекулы в разреженной среде излучают на определенных, хорошо известных длинах волн. Именно в облаках холодного газа зарождаются звезды. Во-вторых, это атомарный, или нейтральный, газ, образующий облака и более разреженную межоблачную среду. Такой газ также не излучает света. Атомарный водород был открыт по радиоизлучению на частоте 1420 МГц (длина волны 21 см). Как правило, в этом состоянии находится основная масса межзвездного газа. В-третьих, в лучах видимого света обычно наблюдаются многочисленные яркие области, образованные газом, ионизованным ультрафиолетовым излучением звезд и нагретым до температуры около 10 000 К. Это области ионизованного газа. Как правило, источником нагрева и ионизации являются молодые массивные звезды, поэтому большое количество ионизованного газа свидетельствует об интенсивном звездообразовании в галактике.

В газовой среде межзвездного пространства содержится и мелкодисперсный твердый компонент – межзвездная пыль. Она проявляет себя двояко. Во-первых, пыль поглощает видимый и ультрафиолетовый свет, вызывая общее ослабление яркости и покраснение галактики. Наиболее непрозрачные (из-за пыли) участки галактики видны как темные области на светлом ярком фоне. Особенно много непрозрачных областей вблизи плоскости звездного диска – именно там концентрируется холодная межзвездная среда. Поэтому, если смотреть на диск галактики «с ребра», то обычно бывает хорошо заметна пылевая полоса, пересекающая галактику по диаметру. Во-вторых, пыль излучает сама, отдавая накопленную энергию света в форме далекого инфракрасного излучения (в диапазоне длин волн 50–1000 мкм). Поэтому полная энергия излучения пыли бывает сопоставима с энергией видимого излучения, приходящего к нам от всех звезд галактики. Суммарная масса пыли сравнительно невелика: она в несколько сотен раз меньше, чем полная масса межзвездного газа. Особенно мало пыли в Е-галактиках, где холодный газ также практически отсутствует; а также в карликовых галактиках, где газа может быть много, но среда содержит мало тяжелых элементов, необходимых для формирования пылинок. Пыль в галактиках является продуктом эволюции звезд.

Звездное население и возраст галактик.

Звезды отличаются друг от друга по массе, возрасту и химическому составу. В каждой галактике могут находиться звезды с различными характеристиками: массивные и маломассивные, молодые и старые. Процент давно образовавшихся (старых) звезд с возрастом в миллиарды лет и звезд, которые можно условно назвать молодыми (с возрастом менее ста миллионов лет) сильно меняется от одной галактики к другой. Хотя старые звезды присутствуют в галактиках всех типов, вдоль морфологической последовательности галактик – от E к Irr – относительное количество молодых звезд в среднем растет.

В Е-галактиках за редчайшими исключениями молодые звезды практически отсутствуют. Спектр и цвет галактик этого типа свидетельствует о том, что они в основном состоят из звезд, возникших более 10 млрд. лет назад. Самые яркие звезды Е-галактик – красные гиганты.

В спиральных и неправильных галактиках есть и старые, и молодые звезды. Самые яркие из них – голубые сверхгиганты, возраст которых не превышает нескольких десятков миллионов лет.

Наибольшее количество молодых звезд наблюдается в некоторых редко встречающихся галактиках со вспышкой звездообразования. Как правило, они относятся к типам Irr или dBCG, но ими могут быть и S-галактики. Молодые массивные звезды придают этим системам голубоватый цвет. Примером сравнительно близкой к нам спиральной галактики со вспышкой звездообразования является NGC 253.

Помимо возрастного состава, звездное население галактик (как, впрочем, и межзвездный газ в них) может различаться своим химическим составом, точнее – относительным содержанием химических элементов тяжелее гелия. Поскольку эти элементы рождаются в массивных звездах, а затем попадают в межзвездное пространство и участвуют в образовании новых поколений звезд, в молодых звездах тяжелых элементов больше, чем в старых. Поэтому измерение содержания тяжелых элементов в звездах позволяет получить информацию об истории звездообразования в галактике. Меньше всего тяжелых элементов оказалось в карликовых галактиках. Частично это объясняется тем, что такие элементы еще не успели в них возникнуть, а частично тем, что часть газа, обогащенного образовавшимися в звездах химическими элементами, получает при выбросе из звезд такие большие скорости, что не удерживается гравитационным полем маломассивной галактики и навсегда покидает ее.

Возраст галактик оценивают по их звездному составу, который определяют по спектру (или цвету) звездного излучения, опираясь при этом на теорию звездной эволюции, указывающую характерный возраст звезд различного спектрального класса. Однако само понятие возраста галактик определено нечетко, поскольку процесс формирования галактики может занимать 1–2 (а в некоторых случаях и более) миллиарда лет. Тем не менее, анализ наблюдений показал, что в абсолютном большинстве случаев самые старые звезды галактик всех типов имеют сходный возраст, превышающий 10 миллиардов лет.

Эпоха, в которую началось массовое формирование галактик как звездных систем из первоначально газовой среды, отстоит от нас на 10–13 млрд. лет. Однако, среди галактик-карликов есть системы, возраст которых, по-видимому, существенно меньше. Некоторые, очень редко встречающиеся карликовые галактики, по-видимому, только в нашу эпоху испытывают первую вспышку интенсивного звездообразования в своей истории. В них содержится много межзвездного газа (атомарного водорода) и молодых звезд, и нет заметных следов присутствия старых звезд (красных гигантов). При этом в их звездах и межзвездном газе очень мало тяжелых элементов, которые просто еще не успели возникнуть. Но чаще всего большое количество молодых звезд свидетельствует не о молодости системы, а о том, что по тем или иным причинам в галактике произошла очередная вспышка звездообразования.

Звездообразование в галактиках.

Звезды и газ – основные составляющие галактик, тесно связанные друг с другом. В холодных облаках газа происходит зарождение звезд, а последние на определенной стадии эволюции возвращают часть вещества в межзвездную среду. При этом массивные звезды своим излучением нагревают и ионизуют газ. Процесс обмена веществом между звездами и межзвездной средой не сбалансирован: поскольку звезды теряют лишь часть своей массы, звездообразование приводит к медленному уменьшению запасов газа в галактике. Поэтому в большинстве галактик на долю газа приходится лишь несколько процентов вещества, содержащегося в звездах, т.е. большая часть газа уже израсходована.

Галактики с интенсивным звездообразованием отличаются большим числом наблюдаемых молодых звезд высокой светимости (голубых сверхгигантов) с более голубым цветом и большим количеством областей ионизованного газа, спектр этих звезд содержит яркие линии излучения. Присутствие молодых массивных звезд делает такие галактики особенно яркими в ультрафиолетовой и далекой инфракрасной областях спектра, приводит к появлению множества областей ионизованного газа. Частые взрывы сверхновых звезд увеличивают мощность радиоизлучения галактики. По этим признакам и оценивается интенсивность звездообразования в галактиках.

В среднем, темпы звездообразования (в расчете на единицу массы или светимости галактики) уменьшаются вдоль хаббловской последовательности типов от Irr к E, хотя есть и исключения из этого правила. В Е-галактиках молодые звезды либо вообще отсутствуют, либо их слабые следы заметны лишь в самом центре галактики. В S- и Irr-галактиках в среднем в звезды превращается от нескольких миллионов до нескольких десятков миллионов солнечных масс вещества за каждый миллион лет. При этом, как правило, чем больше газа в галактике, тем выше и темп звездообразования в ней.

Почти всегда звездообразование в галактиках происходит в их дисках, где наиболее сильно концентрируется межзвездная среда. Главная особенность звездообразования в дисках галактик – его очаговый характер. Газ и молодые звезды, как правило, группируются в отдельных областях диска размером в несколько сотен световых лет. Небольшие галактики могут содержать два-три крупных очага звездообразования, а в галактиках-гигантах сотни областей звездообразования различных размеров рассеяны по всему диску, концентрируясь к спиральным ветвям, где плотность газа наиболее высока. Большая часть наблюдаемых различий между галактиками прямо или косвенно связана со звездообразованием в них – как в современную эпоху, так и в прошлом.

Темп звездообразования и расположение областей, где в галактике рождаются звезды, зависит от многих факторов, которые могут ускорять, или, наоборот, замедлять процесс превращения газа в звезды. Выявление этих факторов и их роли в эволюции галактик – важная и далеко не решенная проблема.

КИНЕМАТИКА ГАЛАКТИК

Вращение галактик.

Отдельные звезды, звездные скопления и газовые облака непрерывно движутся в галактике, причем каждый объект описывает довольно сложную незамкнутую траекторию вокруг центра масс галактики. Но непосредственно измерить перемещение звезд или облаков газа невозможно. Определение скорости движения различных объектов основано на эффекте Доплера , и производится по измерениям сдвига линий в их спектрах. Для звезд – это линии поглощения, для облаков ионизованного газа – линии излучения в оптическом спектре. Для облаков холодного газа, не излучающего света, используются радиолинии излучения водорода (длина волны 21 см) или молекулярных соединений, прежде всего – молекулы СО; большинство этих радиолиний лежит в сантиметровом и миллиметровом диапазонах. Разумеется, измерения дают лишь величину проекции скорости на луч зрения, а восстановление полного вектора скорости требует определенных предположений о характере движения объектов.

Оценка скоростей газа и звезд в галактиках имеет одну особенность: объекты, скорости которых определяются, обычно не видны по отдельности, так что измерения дают некоторые средние значения скоростей в данном месте галактики. При этом каждая звезда или облако газа может иметь скорость, заметно отличающуюся от средней. Поэтому часто говорят не о скорости отдельных объектов, а о скорости газа или звезд данного типа в определенной области галактики.

Скорости движения газа и звезд составляют от нескольких десятков километров в секунду в карликовых галактиках до 200–300 км/с (в редких случаях – до 400 км/с) в гигантских спиральных галактиках.

Все галактики вращаются, но не как твердые тела: орбитальный период объектов возрастает с увеличением расстояния до центра вращения (центра масс) галактики. При этом совокупность звезд и межзвездный газ могут иметь различные скорости вращения даже на одинаковом расстоянии от центра. Характер вращения галактик различных типов также не одинаков.

Эллиптические галактики.

Скорости звезд в них тем больше, чем массивнее галактика, но скорости соседних звезд, как правило, имеют различное направление, так что среднее значение скорости в каждом локальном объеме галактики оказывается небольшим. Поэтому даже при высоких скоростях движения звезд вращение галактики как целого довольно медленное – несколько десятков километров секунду. Любопытно, что степень сжатия галактики, вопреки ожиданиям, оказалась не связанной со скоростью ее вращения: медленно вращающаяся галактика может быть как шарообразной, так и сплюснутой.

Спиральные галактики.

Различные компоненты галактик имеют разные скорости вращения. Медленнее всего вращается звездный балдж и звездное гало: их скорости вращения почти так же невелики, как у Е-галактик. Звезды и газ в галактическом диске вращаются быстрее, потому что скорости всех объектов диска более упорядоченны: они движутся преимущественно в одном направлении. Наибольшей упорядоченностью отличаются скорости облаков газа и молодых звезд. Их орбиты в диске галактики близки к круговым, поэтому скорости этих объектов часто называют скоростями кругового вращения, или круговыми скоростями.

График изменения скорости газа с расстоянием от центра галактики называют кривой вращения галактики. Характерный вид кривых вращения галактик показан на рис. 15 Спиральные ветви могут вызывать заметные отклонения скоростей вращения от круговой скорости, но амплитуда этих отклонений обычно невелика по сравнению с круговой скоростью и, как правило, не превосходит 20–30 км/с. Более существенные отклонения скорости от круговой наблюдаются во взаимодействующих галактиках, а также в локальных областях звездообразования, где воздействие массивных звезд на газ вызывает нагрев и расширение межзвездной среды.

Неправильные галактики.

Это медленно вращающиеся системы. Как и в дисках S-галактик, скорости вращения газа и звезд в них близки к круговым. В отличие от Е-галактик, низкая скорость вращения в Irr-галактиках – следствие их малой массы.

Массы галактик и проблема темного гало.

В середине 20 в. было обнаружено, что в крупных скоплениях галактик средние скорости движения отдельных членов скопления слишком велики, чтобы они могли удержать друг друга в скоплении своим гравитационным притяжением. Но поскольку скопления включают старые звездные системы, они не могут быть короткоживущими образованиями. Отсюда следовало, что большая часть массы должна приходиться на ненаблюдаемую среду, излучение которой почти или полностью отсутствует. Совершенно независимо выявилось, что аналогичная проблема имеет место и для отдельных галактик.

Принцип определения масс галактик довольно прост. Если бы составляющие галактику объекты не притягивали друг друга, то их движение с наблюдаемыми скоростями привело бы к разрушению галактики за несколько сотен миллионов лет. Но силы гравитации препятствуют разлету частей галактики. Поэтому, измерив скорости движения газа или звезд, можно узнать, как распределено вещество в галактике и какова его масса. Пусть скорость кругового вращения в диске галактики на расстоянии R от центра равна V . Тогда масса М галактики, заключенная в пределах R , в первом приближении равна М (R ) = V 2 R /G , где G – гравитационная постоянная. Такой подход позволяет по известной кривой вращения галактики оценить ее массу и узнать, как она распределена в галактике.

В 1970-х было установлено, что форма кривых вращения многих спиральных галактик на больших расстояниях от центра существенно отличается от ожидавшейся. Скорости вращения во внутренней области галактики возрастают с расстоянием R от центра, но, как правило, начиная с некоторого расстояния, почти не меняются с R , сохраняясь высокими даже на периферии диска. Если бы галактика состояла только из обычных (наблюдаемых!) звезд и газа, то скорость вращения во внешних областях галактики должна была бы уменьшаться с ростом R , аналогично тому, как уменьшается скорость обращения планет вокруг Солнца с возрастанием размера их орбит. Более быстрое вращение означает более высокую массу вещества, заключенного в пределах данного радиуса. Отсюда следует, что масса вещества во внешних областях галактик должна быть выше предполагавшейся. Так возникла проблема скрытой, или темной массы в галактиках. Если во внутренней области галактик относительная доля темной массы мала, то чем дальше от центра, тем она больше. Из косвенных данных следует, что основная часть темной массы заключена не в диске, а в сфероидальном компоненте галактик. Поэтому обычно говорят о темном гало галактик.

В различных спиральных и неправильных галактиках доля массы, приходящаяся на темную материю, различна. В большинстве случаев в пределах оптических границ спиральных галактик масса невидимого вещества сопоставима с суммарной массой вещества «видимого»: звезд и газа. Темное вещество продолжает галактику там, где никакого свечения звезд уже не заметно. Но известны и такие галактики, где темная масса преобладает над видимой на всех расстояниях от центра.

Независимо был получен вывод о существовании темной массы и в эллиптических галактиках – по наблюдениям рентгеновского излучения горячего газа. Его температура составляет десятки миллионов градусов, и галактика, состоящая из обычных звезд, была бы не в состоянии удержать такой газ сколь-нибудь долго.

Природа темной массы в галактиках до сих пор не вполне ясна. Часть ее можно связать с маломассивными звездами или телами, промежуточными по массе между звездами и планетами. Их излучение необнаружимо слабо, и поиски таких тел представляет серьезную научную проблему. Маломассивные тела удается обнаружить лишь по их гравитационному воздействию на лучи света от далеких звезд, случайно оказавшихся на одной прямой линии с каким-либо из таких «темных» объектов: отклонение лучей света в гравитационном поле объекта приводит к кратковременному поярчению звезды (эффект гравитационного микролинзирования).

Другое направление поиска скрытой массы связано с попыткой обнаружения новых элементарных частиц, ответственных за эту темную массу. Такие частицы должны иметь ненулевую массу покоя и слабо взаимодействовать с обычным веществом, что делает их трудно обнаружимыми. Общая масса таких частиц должна быть очень велика, они должны заполнять всю галактику, свободно проходя не только сквозь межзвездную среду, но и сквозь планеты и звезды. Ожидается, что скорости движения этих частиц в галактиках примерно такие же, как и скорости звезд. Частицы, обладающие требуемыми свойствами, пока не обнаружены методами лабораторной физики, но их существование предсказывается в рамках физических теорий элементарных частиц. Могут ли они составлять основную массу галактик – это должно быть выяснено дальнейшими исследованиями.

Природа спиральных ветвей.

Большинство наблюдаемых галактик высокой светимости – спиральные. Их спиральные ветви – это структурные образования во вращающихся газо-звездных дисках галактик. В абсолютном большинстве случаев вращение галактик происходит в таком направлении, что наружные концы спиралей «отстают» в своем движении (спирали как бы закручиваются). Хотя такая форма спиралей характерна для структур, возникающих в самых различных вращающихся средах, природа спиралей в галактиках оставалась непонятной в течение долгого времени. Проблема заключается прежде всего в объяснении их долгоживучести. Как уже было отмечено, диски галактик вращаются не как твердые тела: их угловая скорость уменьшается с расстоянием от центра. Такой характер вращения должен растягивать, «размазывать» любой структурный узор диска, так что он не просуществует и нескольких оборотов галактики. Тем не менее, спиральные ветви наблюдаются в большинстве дисковых галактик, несмотря на их большой возраст.

С наблюдательной точки зрения спиральные ветви в галактиках представляют собой области, выделяющиеся более высокой яркостью, и причиной этого в основном служит концентрация в них молодых звезд и облаков ионизованного газа, которые также обязаны своим происхождением молодым массивным звездам. Спиральные ветви как бы синхронизируют звездообразование в диске галактики, стимулируя появление плотных облаков газа и молодых звезд вдоль ветвей. Механизмом такой синхронизации служит сжатие межзвездной среды в спиралях. В ветвях действительно наблюдается повышенная плотность всех компонентов межзвездной среды – газа, пыли, магнитного поля,космических лучей.

Значительно сложнее оказалось обнаружить увеличение плотности старого населения звездного диска в спиральных ветвях, составляющего его основную массу. Лишь наблюдения в ближнем ИК-диапазоне позволили убедиться, что спиральный узор затрагивает не только газ и молодые звезды, но, как правило, все компоненты диска. Увеличение плотности диска в области спиральных ветвей возмущает его гравитационное поле. Это приводит к тому, что звезды и газовые облака в диске в своем движении под действием «избыточных» сил притяжения спиралей, испытывают систематические отклонения от кругового вращения, то увеличивая, то уменьшая свои скорости, причем это происходит таким образом, что спиральный узор не размывается при вращении галактик, а является самоподдерживающимся. Такой согласованный процесс математически описывается как волна плотности, распространяющаяся по диску. Это означает, что спиральный узор не «приклеен» к диску, а движется со своей угловой скоростью, которая остается одинаковой на любом расстоянии от центра галактики, и поэтому спиральная ветвь не может быстро «закрутиться и размазаться». При этом внутренние области диска вращаются быстрее, чем спиральный узор, а внешние области – медленнее. Радиус, на котором эти две скорости вращения сравниваются, называется радиусом коротации. Его положение в галактике определяется из анализа скоростей звезд или газа, измеренных для большого количества локальных областей диска.

Каждая звезда за один оборот вокруг центра галактики может несколько раз пересекать спиральные ветви. Для звезд такие пересечения происходят бесследно, но межзвездный газ, будучи сплошной средой, реагирует на спиральную волну резким увеличением плотности, что, в конечном счете, и приводит к усилению звездообразования. При отсутствии газа яркие спиральные ветви галактик не смогли бы образоваться.

Выявление механизмов возбуждения и поддержания волновых колебаний плотности в дисках галактик представляет отдельную довольно сложную проблему. Большую роль в этих процессах могут играть звездные бары, существующие в центральных областях SB-галактик, а также спутники и соседние галактики, возмущающие движение звезд и газа в диске галактики своим гравитационным полем. Волновая теория спиралей позволила объяснить правильные по форме спиральные узоры, наблюдаемые в галактиках. Справедливость волновых представлений подтверждается анализом скоростей движения газа и звезд в дисках. Но в реальных галактиках ситуация обычно значительно сложнее. Почти никогда спиральный узор не является математически правильным, спиральная структура часто разбивается на отдельные светлые пятна, спирали иногда частично или целиком состоят из коротких дуговых отрезков, не стыкующихся между собой (в таком случае их называют флокуллентными спиралями). Это отражает как сложный характер процесса распространения звездообразования по диску, так и одновременное существование в диске волн с различной частотой и амплитудой.

ЯДРА ГАЛАКТИК

Центральная область галактики, называемая ее ядром, представляет собой наиболее плотную часть звездной системы. На изображении галактики ядро выделяется своей высокой яркостью. Ядра можно заметить у галактик всех типов, кроме неправильных и большинства карликовых галактик. Помимо звезд, в пределах примерно тысячи световых лет от центра галактики, часто концентрируется межзвездный газ и многочисленные области молодых звезд, образующие вращающийся околоядерный диск.

Наиболее удивительное свойство ядер, не объясняемое присутствием только обычных звезд и газа в ядре – это их активность, которая ярко выражена у нескольких процентов галактик высокой светимости. В активных ядрах наблюдаются нестационарные процессы, связанные с выделением большого количества энергии. В некоторых случаях мощность выделения энергии в ядре превышает 10 37 Вт, что сопоставимо или превышает суммарную мощность излучения всех звезд галактики вместе взятых, хотя обычно она все же на 1–2 порядка ниже.

Форма выделения энергии в ядрах, как и наблюдаемые признаки активности, могут быть различными. Это быстрое движение газа со скоростями в тысячи км/с, мощное нетепловое излучение незвездной природы в различных областях спектра – от рентгеновской до радио, образование направленных плазменных струй (джетов), выбросы высокоэнергичных элементарных частиц, ответственные за мощное радиоизлучение галактики. Общей особенностью активных ядер галактик является переменность излучения на самых различных интервалах времени: от нескольких суток или даже часов до нескольких лет.

Галактики, обладающие активными ядрами, принято разделять на несколько типов. Различают галактики Сейферта , радиогалактики , квазары и лацертиды . Проявление активности ядер в каждом из этих типов галактик имеет свои наблюдаемые особенности. Однако во всех случаях источник мощной энергии ядра имеет крошечный размер по сравнению с размером галактики (существенно меньше светового года). «Сердцевиной» такого источника предположительно является сверхмассивная черная дыра , на которую падает, разгоняясь при падении до околосветовых скоростей, первоначально разреженная среда, находившаяся в ее окрестности (такой средой может быть межзвездный газ околоядерного диска или газ, входивший в состав звезд, разорванных гравитационном полем черной дыры). Это предположение подтверждается открытием в ядрах крупных галактик всех типов массивных объектов (по-видимому, черных дыр), не обладающих заметным излучением, но создающих очень сильное гравитационное поле. Их массы составляют от нескольких миллионов до нескольких миллиардов масс Солнца. Теоретически, кинетическая энергия падения вещества, сообщаемая ему гравитационным полем черной дыры, может в десятки раз превосходить энергию, которую способны дать любые термоядерные реакции в этом веществе. С этой точки зрения, активность ядра связана с различными механизмами преобразования энергии падающего вещества в другие формы. При этом ядро галактики может находиться в активном или спокойном состоянии в зависимости от наличия потоков вещества на черную дыру.

Ядро нашей Галактики, как и соседней с нами Туманности Андромеды, находится в сравнительно спокойном состоянии, несмотря на то, что в самом центре этих галактик обнаружено существование объектов, по-видимому, являющихся массивными черными дырами. Ближайшая к нам спиральная галактика с активным ядром – галактика Сейферта NGC 1068, находящаяся на расстоянии около 50 млн. св. лет в созвездии Кита. Ближайшая пекулярная эллиптическая галактика с активным ядром – радиогалактика NGC 5128 в созвездии Центавра Расстояние до нее в несколько раз меньше.


СИСТЕМЫ ГАЛАКТИК

Группы галактик.

Галактики часто объединены в пары, триплеты и более сложные группы. Одиночные, или, как их не совсем правильно называют, «изолированные» галактики, встречаются редко. Так, наша Галактика окружена системой небольших спутников, из которых самыми крупными являются Большое и Малое Магеллановы Облака. У Туманности Андромеды тоже есть спутники. Все эти объекты, в свою очередь, входят в Местную группу галактик с диаметром около 5 млн. световых лет, в которой находится несколько десятков галактик (в основном – карликовых), причем наша галактика и Туманность Андромеды являются самыми яркими и массивными членами этой группы. В пределах 30 млн. световых лет от Местной группы обнаружено еще более десятка подобных групп.

Таблица 2. Главные галактики местной группы
Таблица 2. ГЛАВНЫЕ ГАЛАКТИКИ МЕСТНОЙ ГРУППЫ
Видимые Абсолютные
Галактика Тип Расст. 1 Вел. 2 Диам. 3 Свети-мость 4 Диам. 5 Масса 6 M/L 7
Млечный Путь Sbc 14,5? 80? 200? 14?
БМО Sm 0,15 0,6 12° 2,75 31 15 5,5
ММО Smp 0,18 2,8 0,52 13 3 5,8
М 31 Sb 2,10 4,4 22,9 110 400 17
М 32 E2 2,10 9,1 0,21 2 1? 5?
М 33 Sc 2,20 6,3 3,63 38 20 5,5
Скульптор E 0,35 9,2? 45ў 0,004 5
Печь E 0,75 9,0 50ў 0,019 11 0,1? 5
NGC 205 E 2,10 8,8 11ў 0,27 6
NGC 6822 Im 1,80 9,3 20ў? 0,11? 7
IC 1613 Im 2,10 9,9 20ў 0,076 10
1 Расстояние в миллионах световых лет.
2 Видимая звездная величина в голубых лучах.
3 Видимый угловой диаметр в градусах или минутах дуги.
4 Абсолютная светимость в миллиардах солнечных единиц.
5 Линейный диаметр в тысячах световых лет.
6 Масса в миллиардах солнечных единиц.
7 Отношение массы к светимости в солнечных единицах.

Массы пар, групп и триплетов галактик оценивают по разности лучевых скоростей их членов, считая, что гравитационное поле системы должно быть достаточным для удержания всех галактик вместе. Найденная таким образом масса обычно бывает больше суммарной массы всех видимых членов группы. Такое расхождение называют «проблемой скрытой массы» в системах галактик. Эта проблема родственна проблеме скрытой массы в отдельных галактиках и в их скоплениях.

Скопления галактик.

Системы галактик, содержащие сотни и тысячи отдельных членов, называют скоплениями галактик. Ближайшее из них находится в созвездии Девы на расстоянии более 40 млн. световых лет. Его видимый диаметр около 12° (что соответствует линейному диаметру 8 млн. световых лет), а самые яркие галактики скопления видны как объекты 9-й – 10-й звездной величины. Эллиптические и линзовидные галактики в нем концентрируются к центру, а доля спиральных и неправильных галактик растет к периферии. Еще дальше наблюдаются более богатые скопления, например, гигантское скопление в созвездии Волосы Вероники, находящееся на расстоянии около 300 млн. световых лет. Обычно это скопление называют просто Coma (читается – Кома, от Coma Berenices – Волосы Вероники). В нем более 10 тыс. галактик, половина из которых сосредоточена в центральной области диаметром 1,5°, что соответствует 8 млн. световых лет. 23

В богатых скоплениях типа Coma галактики сильно концентрируются к центру, наподобие звезд в эллиптических галактиках. В центральной части скопления наблюдаются преимущественно эллиптические и линзовидные галактики. Полная масса гигантских скоплений достигает 10 14 масс Солнца. Эта масса только частично заключена в галактиках. Существенная часть вещества скопления приходится на горячий межгалактический газ: Несмотря на очень низкую плотность газа (концентрация атомов составляет всего 100–1000 атомов в куб. метре), его свечение во многих скоплениях уверенно регистрируется рентгеновскими космическими телескопами. Но, как и во многих группах галактик и отдельных галактиках, основная часть массы скоплений приходится не на звезды и газ, а на так называемую «темную массу», излучение которой не обнаруживается.

Не только галактики, но и скопления галактик распределены в пространстве неоднородно. Известны обширные области, где частота встречаемости галактик и скоплений галактик в 5–10 раз выше средней. Иногда такие уплотнения называют сверхскоплениями, однако, их нельзя рассматривать как скопления более высокого уровня. В отличие от обычных скоплений галактик, они не являются гравитационно связанными системами и находятся в состоянии космологического расширения. К такого рода уплотнениям относится, например, вытянутая область Сверхскопления Шепли в созвездии Центавра. Расстояние до него около 650 млн световых лет, а его протяженность превышает 60 млн световых лет. Концентрацию групп и мелких скоплений на расстоянии нескольких десятков млн. лет вокруг скопления Девы часто называют Локальным Сверхскоплением.

Статистический анализ распределения большого количества далеких скоплений показывает, что их совокупность образует в пространстве своего рода ячеистую структуру с характерным размером ячеек 400–500 млн световых лет. К границам ячеек концентрация галактик и их скоплений возрастает и становится в несколько раз выше средней, зато внутри ячеек обширные пространства могут быть практически лишены галактик высокой светимости. Такая структура сформировалась на ранней, догалактической стадии расширения Вселенной под действием сил гравитации вещества, еще не успевшего распасться на отдельные протогалактики.

Взаимодействующие галактики.

В парах, группах или скоплениях галактик достаточно часто происходят тесные сближения или даже столкновения отдельных галактик. При этом, как правило, гравитационные силы между сблизившимися галактиками приводят к искажению их форм, появлению общего светящегося «тумана» из отдельных звезд, покинувших галактики, к возникновению перемычек или длинных хвостов, состоящих из газа и звезд, направленно выброшенных из галактик. Системы таких галактик называют взаимодействующими (термин введен Б.А.Воронцовым-Вельяминовым, который первым начал систематически исследовать эти объекты). Компьютерное моделирование показало, что большинство форм взаимодействующих галактик можно естественно объяснить их гравитационным влиянием друг на друга. Подбирая величину и направление относительных скоростей галактик, их массы и расстояния между ними, можно имитировать наблюдаемые особенности взаимодействующих галактик, в том числе – развитие хвостов и перемычек в результате сближения двух систем. При каждом сближении галактик в группах или парах они теряют часть энергии своего орбитального движения и должны при каждой последующей встрече подходить все ближе друг к другу. Конечным этапом такого процесса неизбежно будет взаимное проникновение галактик и их слияние в одну систему, но это может занять многие миллиарды лет.

Эффекты взаимодействия не сводятся только к искажению форм или появлению длинных выбросов вещества. Они, в частности, могут сильно отразиться на характере движения межзвездного газа в дисках галактик, вызвать появление крупномасштабных ударных волн, привести к резкому возрастанию темпов звездообразования в одной или обеих галактиках, к перераспределению газа в них и даже к всплеску активности ядра. Особенно сильные эффекты возникают при взаимном проникновении галактик или попадании небольшого спутника внутрь гигантской галактики. В последнем случае, как показывают расчеты, спутник должен двигаться по спирали к ядру галактики, быстро разрушаясь при этом. В частности, наличие газопылевых дисков в некоторых эллиптических галактиках (в том числе и в упоминавшейся выше радиогалактике NGC 5128) связано, по-видимому, с разрушением спутников, богатых газом, некогда захваченных галактикой.

При поглощении достаточно массивного спутника или слиянии двух галактик сопоставимой массы может измениться внутренняя структура и даже морфологический тип галактик. Слияние галактик и поглощение ими мелких спутников – важная особенность эволюции галактик всех типов. В нашей Галактике также имеются следы разрушения захваченных ею звездных систем, а один из карликовых спутников, сравнительно недавно проникший в Галактику и еще не успевший разрушиться, наблюдается вблизи плоскости Галактики по другую сторону от ее центра, в созвездии Стрельца.

Анатолий Засов

Литература:

Бааде В. Происхождение и эволюция звезд и галактик . М.: Мир, 1966
Хойл Ф. Галактики, ядра, квазары . М.: Мир, 1968
Происхождение и эволюция галактик и звезд . – Ред. С.Б.Пикельнера. М.: Наука, 1976
Воронцов-Вельяминов Б.А. Внегалактическая астрономия . М.: Наука, 1978
Миттон С. Исследование галактик . М.: Мир, 1980
Агекян Т.А. Звезды, галактики, Метагалактика . М.: Наука, 1981
Тейлер Р.Дж. Галактики: строение и эволюция . М.: Мир, 1981
Марочник Л.С., Сучков А.А. Галактика . М.: Наука, 1984
Гуревич Л.Э., Чернин А.Д. Происхождение галактик и звезд . Наука, 1987
Сучков А.А. Галактики знакомые и загадочные . М.: Наука, 1988
Ходж П. Галактики . М.: Наука, 1992
Засов А.В. Физика галактик . М.: Из-во МГУ, 1993
Сурдин В.Г. Рождение звезд . М.: УРСС, 2001
Ефремов Ю.Н. В глубины Вселенной . М.: УРСС, 2003



Состав межзвездной среды

Основной компонент МЗС – это водород (~ 70 % полной массы), который присутствует там в различных формах: нейтральный атомарный

водород, молекулярный водород (H2 ), ионизованный водород.

Около 28 % массы приходится на гелий и ~ 2 % на долю остальных элементов.

Помимо газа в МЗС имеются твердые частицы (пыль). Отношение массы пыли к массе газа ~ 0.01.

Двухфазная модель межзвездной среды

В простейшей двухфазной модели в некотором интервале давлений нейтральная МЗС распадается на две устойчивые фазы (находящиеся в равновесии давлений): плотную холодную («облака»), T ~ 100 K,

n ~ 10 см-3 , и разреженную горячую («межоблачная среда»), T ~ 104 K, n ~ 0.1 см-3 .

Основные компоненты МЗС

Фаза

Корональный газ

Зоны HII низкой плотности

Межоблачная среда

Теплые области HI

Облака HI

Темные облака

Области HII

Гигантские молеку- лярные облака

Мазерные

конденсации

T (K)

n (см-3 )

M (Msun )

L (пк)

~ 5·105

~104

~104

~103

~103

~ 10-5

~104

~ 3·10-9

~104

~ 10-4

~ 3·105

~ 3·10-4

~ 1010

~ 10-5

Механизмы нагрева и охлаждения

Основные механизмы нагрева

Ультрафиолетовое излучение звезд (фотоионизация).

Нагрев ударными волнами.

Объемный нагрев газа проникающей радиацией и космическими лучами

Объемный нагрев газа жестким электромагнитным излучением (рентгеновскими и гамма-квантами).

Основные механизмы охлаждения

Свободно-свободное (тормозное) излучение

Рекомбинационное излучение

Излучение в спектральных линиях

Излучение пыли

Ионизация электронным ударом

Космические лучи

Поток космических лучей в окрестности Солнечной системы составляет ~ 1 частица/см 2 ·с. Отсюда средняя концентрация быстрых протонов в межзвездной среде ~ 10-10 –10-11 см-3 .

В составе космических лучей больше всего протонов (~ 90 % по числу частиц). Ядра гелия по числу частиц составляют около 7 %. Особенностью КЛ является относительно большое обилие ядер лития, бериллия, бора (~ 0.14 %), в то время как в межзвездной газо-пылевой среде их очень мало (~ 10-6 %).

Спектр энергии КЛ имеет степенной характер, хотя показатель спектра может меняться в разных областях. Средняя плотность энергии КЛ близка к 10-12 эрг/см3 .

Вероятнее всего КЛ ускоряются при вспышках сверхновых и (или) в пульсарах.

Дифференциальный спектр космических лучей в межпланетном пространстве вблизи орбиты Земли: 1 - протоны; 2 - -частицы галактических космических лучей; 3 - протоны от солнечных вспышек.

Для сравнения показаны

спектры протонов и -частиц

Происхождение космических лучей

Зависимость потока гамма- лучей от галактической долготы l по данным наблюдений (вертикальные чёрточки) в сравнении с результатами расчёта (сплошная кривая) на основе гипотезы об остатках вспышек сверхновых как главном источнике космических лучей.

Механизмы ускорения КЛ

Механизм Ферми .

Взаимодействие между частицей и межзвездными облаками, которые движутся вместе с вмороженными магнитными полями

(магнитная бутылка). Пробки сближаются со скоростью U << V . За одно столкновение частица приобретает скорость 2U , число столкновений в единицу времени V /2L .

V dL

Статистический механизм ускорения (при хаотическом движении частицы между облаками). При встречных столкновениях с облаками энергия частицы возрастает, при догоняющих – уменьшается. Относительная скорость при встречных столкновениях выше, поэтому и число таких столкновений больше. Газ тяжелых облаков находится в равновесии с газом частиц. Направление процесса должно вести к установлению равнораспределения энергии между облаками и частицами. Роль магнитного поля сводится к отражению частиц от облаков.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЛИЦЕЙ №11 ГОРОДА ЧЕЛЯБИНСКА

Реферат

н а тему :

«Газопылевые комплексы . Межзвездная среда »

Выполнила:

Ученица 11э класса

Киселёва Полина Олеговна

Проверила:

Лыкасова Алевтина Павловна

Челябинск 2015

О ГЛАВЛЕНИЕ

Введение

1. История исследований МЗС

2. Основные составляющие МЗС

2.1 Межзвёздный газ

2.2 Межзвёздная пыль

2.3 Межзвёздное облако

2.4 Космические лучи

2.5 Межзвёздное магнитное поле

3. Физические особенности МЗС

4. Туманности

4.1 Диффузная (светлая) туманность

4.2 Тёмная туманность

5. Излучение

6. Эволюция межзвёздной среды

Заключение

Список источников

ВВЕДЕНИЕ

Вселенная, по своей сути, почти пустое пространство. Лишь сравнительно недавно удалось доказать, что звезды существуют не в абсолютной пустоте и что космическое пространство не вполне прозрачно. Звёзды занимают лишь малую часть огромной Вселенной. Вещество и поля, заполняющие межзвездное пространство внутри галактик, называют межзвёздной средой (МЗС). Природа межзвёздной среды столетиями привлекала внимание астрономов и учёных. Термин «межзвёздная среда» впервые был использован Ф.Бэконом в 1626г.

1. ИСТОРИЯ ИССЛЕДОВАНИЙ МЗС

Еще в середине 19 в. российский астроном В.Струве пытался научными методами найти непреложные свидетельства того, что пространство не пустое, и в нем происходит поглощение света далеких звезд, но безуспешно. межзвёздный среда облако газ

Позже немецкий астрофизик Ф.Гартман проводил исследование спектра Дельты Ориона и изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды. Поняв, что некоторая часть света поглощается на пути к Земле, Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393,4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение, не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвездной среды.

Интенсивные исследования межзвёздной материи позволили У. Пикерингу в 1912 году заявить, что «межзвёздная поглощающая среда, которая как показал Каптейн , поглощает только на некоторых волнах, может свидетельствовать о наличии газа и газообразных молекул, которые исторгаются Солнцем и звёздами».

В том же 1912-м году В. Гесс открыл космические лучи, энергичные заряженные частицы, которые бомбардируют Землю из космоса. Это позволило заявить некоторым исследователям, что они также наполняют собой межзвёздную среду.

После исследований Гартмана, в 1919 году, Эгер во время изучения линий поглощения на волнах 589,0 и 589,6 нанометров в системах Дельты Ориона и Беты Скорпиона обнаружил в межзвёздной среде натрий.

Наличие поглощающей разреженной среды было убедительно показано менее ста лет назад, в первой половине 20 в., путем сравнения наблюдаемых свойств далеких звездных скоплений на различных расстояниях от нас. Это было сделано независимо американским астрономом Робертом Трюмплером (1896-1956) и советским астрономом Б.А. Воронцовым-Вельяминовым (1904-1994). Вернее, так была обнаружена одна из составляющих межзвездной среды - мелкая пыль, из-за которой межзвездная среда оказывается не вполне прозрачной, особенно в направлениях, близких к направлению на Млечный Путь. Присутствие пыли означало, что и видимая яркость, и наблюдаемый цвет далеких звезд искажены, и чтобы узнать их истинные значения, нужен довольно сложный учет поглощения. Пыль, таким образом, была воспринята астрономами как досадная помеха, мешающая исследованию далеких объектов. Но одновременно возник интерес и к изучению пыли как физической среды - ученые стали выяснять, как пылинки возникают и разрушаются, как реагирует пыль на излучение, какую роль играет пыль в образовании звезд.

С развитием радиоастрономии во второй половине 20 в. появилась возможность исследовать межзвездную среду по ее радиоизлучению. В результате целенаправленных поисков было обнаружено излучение атомов нейтрального водорода в межзвездном пространстве на частоте 1420 МГц (что соответствует длине волны 21 см). Излучение на этой частоте (или, как говорят, в радиолинии) предсказал голландский астроном Хендрик ван де Хюлст в 1944 на основании квантовой механики, а обнаружено оно было в 1951 г. после расчета ее ожидаемой интенсивности советским астрофизиком И.С.Шкловским . Шкловский же указал и на возможность наблюдения излучения различных молекул в радиодиапазоне, которое, действительно, было позднее обнаружено. Масса межзвездного газа, состоящего из нейтральных атомов и очень холодного молекулярного газа, оказалось примерно в сто раз большей, чем масса разреженной пыли. Но газ совершенно прозрачен для видимого света, поэтому его нельзя было обнаружить теми же методами, какими была открыта пыль.

С появлением рентгеновских телескопов, устанавливаемых на космических обсерваториях, был обнаружен еще один, наиболее горячий компонент межзвездной среды - очень разреженный газ с температурой в миллионы и десятки миллионов градусов. Ни по оптическим наблюдениям, ни по наблюдениям в радиолиниях этот газ «увидеть» невозможно - среда слишком разрежена и полностью ионизована, но, тем не менее, он заполняет существенную долю объема всей нашей Галактики.

Быстрое развитие астрофизики, изучающей взаимодействие вещества и излучения в космическом пространстве, как и появление новых возможностей наблюдений, позволило детально исследовать физические процессы в межзвездной среде. Возникли целые научные направления - космическая газодинамика и космическая электродинамика , изучающие свойства разреженных космических сред. Астрономы научились определять расстояния до газовых облаков, измерять температуру, плотность и давление газа, его химический состав, оценивать скорости движения вещества. Во второй половине 20 в. выявилась сложная картина пространственного распределения межзвездной среды и ее взаимодействия со звездами. Оказалось, что от плотности и количества межзвездного газа и пыли зависит возможность зарождения звезд, а звезды (прежде всего, наиболее массивные из них), в свою очередь, меняют свойства окружающей межзвездной среды - нагревают ее, поддерживают непрестанное движение газа, пополняют среду своим веществом, меняют ее химический состав.

2. ОСНОВНЫЕ СОСТАВЛЯЮЩИЕ МЗС

Межзвёздная среда включает в себя межзвёздный газ, пыль (1 % от массы газа), межзвёздные магнитные поля, межзвёздное облако, космические лучи, а также тёмную материю. Химический состав межзвёздной среды -- продукт первичного нуклеосинтеза и ядерного синтеза в звёздах.

2 .1 Межзвёздный газ

Межзвёздный газ - это разрежнная газовая среда, заполняющая всё пространство между звёздами. Межзвёздный газ прозрачен. Полная масса межзвёздного газа в Галактике превышает 10 миллиардов масс Солнца или несколько процентов суммарной массы всех звёзд нашей Галактики. Средняя концентрация атомов межзвёздного газа составляет менее 1 атома в смі. Плотность газа в среднем составляет около 10?21 кг/мі. Химический состав примерно такой же, как и у большинства звёзд: он состоит из водорода и гелия с небольшой примесью более тяжёлых элементов. В зависимости от температуры и плотности межзвёздный газ пребывает в молекулярном, атомарном или ионизованном состояниях. Ультрафиолетовые лучи, в отличие от лучей видимого света, поглощаются газом и отдают ему свою энергию. Благодаря этому горячие звёзды своим ультрафиолетовым излучением нагревают окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность. Более холодный, «невидимый» газ наблюдают радиоастрономическими методами. Атомы водорода в разрежённой среде излучают радиоволны на длине волны около 21 см. Поэтому от областей межзвёздного газа непрерывно распространяются потоки радиоволн. Принимая и анализируя это излучение, учёные узнают о плотности, температуре и движении межзвёздного газа в космическом пространстве.

2 .2 Межзвёздная пыль

Межзвёздная пыль -- твёрдые микроскопические частицы, наряду с межзвёздным газом заполняющие пространство между звёзд. В настоящее время считается что пылинки имеют тугоплавкое ядро, окруженное органическим веществом или ледяной оболочкой. Химический состав ядра определяется тем, в атмосфере каких звёзд они сконденсировались. Например в случае углеродных звёзд, они будут состоять из графита и карбида кремния.

Типичный размер частиц межзвездной пыли от 0,01 до 0,2 мкм, полная масса пыли составляет порядка 1 % от полной массы газа. Свет звёзд нагревает межзвёздную пыль до нескольких десятков K, благодаря чему межзвёздная пыль является источником длинноволнового инфракрасного излучения.

Пыль также влияет на химические процессы, проходящие в межзвездной среде: пылевые гранулы содержат тяжелые элементы, которые используются как катализатор в различных химических процессах. Гранулы пыли участвуют и в образовании молекул водорода, что увеличивает темп звездообразования в металло-бедных облаках

2 .3 Межзвёздное облако

Межзвёздное облако -- общее название для скоплений газа, плазмы и пыли в нашей и других галактиках. Иными словами, межзвёздное облако имеет более высокую плотность, чем средняя плотность межзвёздной среды. В зависимости от плотности, размера и температуры данного облака, водород в нем может быть нейтральным, ионизированным (то есть в виде плазмы) или молекулярным. Нейтральные и ионизованные облака иногда называют диффузными облаками, в то время как молекулярные облака называют плотными облаками.

Анализ состава межзвёздных облаков осуществляется путём изучения их электромагнитного излучения с помощью больших радиотелескопов. Исследуя спектр излучения межзвёздного облака и сопоставляя его со спектром конкретных химических элементов, можно определить химический состав облака.

Обычно около 70 % массы межзвёздного облака составляет водород, оставшаяся часть приходится в основном на гелий. В облаках также присутствуют следы тяжёлых элементов: металлов, таких как кальций, нейтральный или в форме катионов Ca+ (90 %) и Ca++ (9 %), и неорганические соединения, такие как вода, оксид углерода, сероводород, аммиак и цианистый водород.

2 .4 Космические лучи

Космимческие лучим -- элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве. Их основным (но не единственным) источником служат взрывы сверхновых звезд.

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

Химический спектр космических лучей в пересчете энергии на нуклон более чем на 94 % состоит из протонов, ещё на 4 % -- из ядер гелия (альфа-частиц). Есть также ядра других элементов, но их доля значительно меньше.

По количеству частиц космические лучи на 90 процентов состоят из протонов, на 7 процентов -- из ядер гелия, около 1 процента составляют более тяжелые элементы, и около 1 процента приходится на электроны.

2 .5 Межзвёздное магнитное поле

Частицы движутся в слабом магнитном поле межзвездного пространства, индукция которого примерно в сто тысяч раз меньше, чем у магнитного поля Земли. Межзвездное магнитное поле, действуя на заряженные частицы с силой, зависящей от их энергии, «запутывает» траектории частиц, и они непрерывно меняют направление своего движения в Галактике. Заряженные частицы, летящие в межзвездном магнитном поле, отклоняются от прямых траекторий под действием силы Лоренца. Их траектории словно «наматываются» на линии магнитной индукции.

3. ФИЗИЧЕСКИЕ ОСОБЕННОСТИ МЗС

· Отсутствие локального термодинамического равновесия (ЛТР) - с остояния системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды.

· Тепловая неустойчивость

Условие теплового равновесия может вовсе не выполняться. Существует магнитное поле, которое препятствует сжатию, если только оно не происходит вдоль линий поля. Во-вторых, межзвёздная среда находится в непрерывном движении и её локальные свойства непрерывно меняются, в ней появляются новые источники энергии и исчезают старые. В-третьих, кроме термодинамической неустойчивости существуют гравитационная и магнитогидродинамическая. И это без учёта всякого рода катаклизмов в виде вспышек сверхновых, приливных влияний, проходящих по соседству галактик, или прохождения самого газа через спиральные ветви Галактики.

· Запрещенные линии и линия 21 см

Отличительной особенностью оптически тонкой среды является излучение в запрещённых линиях . Запрещёнными называют линии, которые запрещены правилами отбора, то есть происходят с метастабильных уровней (квазиустойчивого равновесия). Характерное время жизни электрона на этом уровне -- от с до нескольких суток. При высоких концентрациях частиц их столкновение снимает возбуждение и линии не наблюдаются из-за крайней слабости. При и малых плотностях интенсивность линии не зависит от вероятности перехода, поскольку малая вероятность компенсируется большим числом атомов находящихся в метастабильном состоянии. Если ЛТР нет, то заселённость энергетических уровней следует рассчитывать из баланса элементарных процессов возбуждения и деактивации.

Важнейшей запрещённой линией МЗС является радиолиния атомарного водорода 21 см . Эта линия возникает при переходе между подуровнями сверхтонкой структуры уровня водорода, связанными с наличием спина у электрона и протона. Вероятность этого перехода (То есть 1 раз в 11 млн лет).

Исследования радиолинии 21 см позволили установить, что нейтральный водород в галактике в основном заключён в очень тонком, 400 пк толщиной, слое около плоскости Галактики.

· Вмороженность магнитного поля.

Вмороженность магнитного поля означает сохранение магнитного потока через любой замкнутый проводящий контур при его деформации. В лабораторных условиях магнитный поток можно считать сохраняющимся в средах с высокой электропроводностью. В пределе бесконечной электропроводности бесконечное малое электрическое поле вызвало бы рост тока до бесконечной величины. Следовательно идеальный проводник не должен пересекать магнитные силовые линии, и таким образом возбуждать электрическое поле, а напротив должен увлекать за собой линии магнитного поля, магнитное поле оказывается как бы вмороженным в проводник.

Реальная космическая плазма, далеко не идеальна и вмороженность стоит понимать в том смысле, что требуется очень большое время для изменения потока через контур. На практике это означает, что мы можем считать поле постоянным пока облако сжимается, обращается и т. д.

4. ТУМАННОСТИ

Туманность -- участок межзвёздной среды, выделяющийся своим излучением или поглощением излучения на общем фоне неба. Туманности состоят из пыли, газа и плазмы.

Первичный признак, используемый при классификации туманностей -- поглощение, или же излучение либо рассеивание ими света, то есть по этому критерию туманности делятся на тёмные и светлые.

Деление туманностей на газовые и пылевые в значительной степени условно: все туманности содержат и пыль, и газ. Такое деление исторически обусловлено различными способами наблюдения и механизмами излучения: наличие пыли наиболее ярко наблюдается при поглощении тёмными туманностями излучения расположенных за ними источников и при отражении или рассеивании, или переизлучении, содержащейся в туманности пылью излучения расположенных поблизости или в самой туманности звёзд; собственное излучение газовой компоненты туманности наблюдается при её ионизации ультрафиолетовым излучением расположенной в туманности горячей звезды (эмиссионные области H II ионизированного водорода вокруг звёздных ассоциаций или планетарные туманности) или при нагреве межзвёздной среды ударной волной вследствие взрыва сверхновой или воздействия мощного звёздного ветра звёзд типа Вольфа -- Райе.

4 .1 Диффузная (светлая) туманность

Диффузная (светлая) туманность -- в астрономии, общий термин, используемый для обозначения излучающих свет туманностей. Три типа диффузных туманностей -- это отражательная туманность, эмиссионная туманность (разновидностью которой являются протопланетарная, планетарная и область H II) и остаток сверхновой.

· Отражательная туманность

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами. Если звезда (звёзды) находится в межзвёздном облаке или рядом с ним, но недостаточно горяча (горячи), чтобы ионизовать вокруг себя значительное количество межзвёздного водорода, то основным источником оптического излучения туманности оказывается свет звёзд, рассеиваемый межзвёздной пылью.

Спектр отражательной туманности такой же, как и у подсвечивающей ее звезды. Среди микроскопических частиц, ответственных за рассеивание света, можно выделить частички углерода (иногда их называют бриллиантовой пылью), а также частицы железа и никеля. Последние две взаимодействуют с галактическим магнитным полем, и поэтому отражённый свет слегка поляризован.

Отражательные туманности обычно имеют синий оттенок, поскольку рассеяние голубого цвета более эффективно, чем красного (именно этим, в частности, объясняется голубой цвет неба).

В настоящее время известно порядка 500 отражательных туманностей, самая известная из которых -- вокруг Плеяд (звёздное скопление). Гигантская красная (спектральный класс M1) звезда Антарес окружена большой красной отражательной туманностью. Отражательные туманности также часто встречаются в местах звёздообразования.

В 1922 году Хаббл опубликовал результаты исследований некоторых ярких туманностей. В этой работе Хаббл вывел закон светимости для отражательной туманности, который устанавливает соотношение между угловым размером туманности (R ) и видимой величиной подсвечивающей звезды (m ):

где -- константа, зависящая от чувствительности измерения.

· Эмиссионная туманность

Эмиссионная туманность -- облако ионизированного газа (плазмы), излучающее в видимом цветовом диапазоне спектра. Ионизация происходит за счёт высокоэнергетических фотонов, излучаемых ближайшей горячей звездой. Различают несколько видов эмиссионных туманностей. Среди них -- области H II, в которых происходит формирование новых звёзд, и источниками ионизирующих фотонов являются молодые, массивные звезды, а также планетарные туманности , в которых умирающая звезда отбросила свои верхние слои, и обнажившееся горячее ядро их ионизирует.

Планета м рная тума м нность -- астрономический объект, состоящий из ионизированной газовой оболочки и центральной звезды, белого карлика. Планетарные туманности образуются при сбросе внешних слоёв (оболочек) красных гигантов и сверхгигантов с массой 2,5--8 солнечных на завершающей стадии их эволюции. Планетарная туманность -- быстропротекающее (по астрономическим меркам) явление, длящееся всего несколько десятков тысяч лет, при продолжительности жизни звезды-предка в несколько миллиардов лет. В настоящее время в нашей галактике известно около 1500 планетарных туманностей.

Процесс образования планетарных туманностей, наряду со вспышками сверхновых, играет важную роль в химической эволюции галактик, выбрасывая в межзвёздное пространство материал, обогащённый тяжёлыми элементами -- продуктами звёздного нуклеосинтеза (в астрономии тяжёлыми считаются все элементы, за исключением продуктов первичного нуклеосинтеза Большого взрыва -- водорода и гелия, такие как углерод, азот, кислород и кальций).

В последние годы при помощи снимков, полученных космическим телескопом «Хаббл», удалось выяснить, что многие планетарные туманности имеют очень сложную и своеобразную структуру. Несмотря на то, что приблизительно пятая часть из них имеет околосферическую форму, большинство не обладает какой бы то ни было сферической симметрией. Механизмы, благодаря которым возможно образование такого многообразия форм, остаются на сегодняшний день до конца не выясненными. Считается, что большую роль в этом могут играть взаимодействие звёздного ветра и двойных звёзд, магнитного поля и межзвёздной среды.

Планетарные туманности в большинстве своём представляют собой тусклые объекты и, как правило, не видны невооружённым глазом. Первой открытой планетарной туманностью была туманность Гантель в созвездии Лисички.

Необычность природы планетарных туманностей обнаружилась в середине XIX века, с началом использования в наблюдениях метода спектроскопии. Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей -- объектов, выделявшихся своей необычностью. При изучении Хаггинсом спектров туманностей NGC 6543 (Кошачий Глаз) , M27 (Гантель), M 57 (кольцевая туманность в Лире) и ряда других, оказалось, что их спектр чрезвычайно отличается от спектров звёзд: все полученные к тому времени спектры звёзд являлись спектрами поглощения (непрерывный спектр с большим количеством тёмных линий), в то время как спектры планетарных туманностей оказались эмиссионными спектрами с небольшим количеством эмиссионных линий, что указывало на их природу, в корне отличающуюся от природы звёзд.

Планетарные туманности представляют собой заключительный этап эволюции для многих звёзд. Типичная планетарная туманность имеет среднюю протяжённость в один световой год и состоит из сильно разреженного газа плотностью около 1000 частиц на смі, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10--100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 10 6 частиц на смі. По мере старения туманностей их расширение приводит к уменьшению плотности. Большинство планетарных туманностей симметричны и имеют почти сферический вид, что не мешает им иметь множество очень сложных форм. Приблизительно 10 % планетарных туманностей практически биполярны, и лишь малое их число асимметричны. Известна даже прямоугольная планетарная туманность.

Протопланетарная туманность - это астрономический объект, который недолго существует между тем, как среднемассивная звезда (1-8 солнечных масс) покинула асимптотическую ветвь гигантов (АВГ) и последующей фазой планетарной туманности (ПТ). Протопланетарная туманность светит в основном в инфракрасном диапазоне и является подтипом отражательных туманностей.

Область H II - это облако горячего газа и плазмы, достигающее нескольких сотен световых лет в поперечнике, являющееся областью активного звездообразования. В этой области рождаются молодые горячие голубовато-белые звёзды, которые обильно излучают ультрафиолетовый свет, тем самым ионизируя окружающую туманность.

Области H II могут рождать тысячи звёзд за период всего в несколько миллионов лет. В конце концов, взрывы сверхновых и мощный звёздный ветер, исходящий от наиболее массивных звёзд в образовавшемся звёздном скоплении, рассеивают газы этой области, и она превращается в группу наподобие Плеяд.

Эти области получили своё название из-за большого количества ионизированного атомарного водорода, обозначаемого астрономами как H II (область H I -- зона нейтрального водорода, а H 2 обозначает молекулярный водород). Их можно заметить на значительных расстояниях по всей Вселенной, и изучение таких областей, находящихся в других галактиках, важно для определения расстояния до последних, а также их химического состава.

Примерами являются туманность Киля , туманность Тарантул, NGC 604 , Трапеция Ориона , Петля Барнарда .

· Остаток сверхновой

Остаток сверхновой (англ. S uper N ova R emnant , SNR ) -- газопылевое образование, результат произошедшего много десятков или сотен лет назад катастрофического взрыва звезды и превращения её в сверхновую. Во время взрыва оболочка сверхновой разлетается во все стороны, образуя расширяющуюся с огромной скоростью ударную волну, которая и формирует остаток сверхновой . Остаток состоит из выброшенного взрывом звёздного материала и поглощаемого ударной волной межзвёздного вещества.

Вероятно самый красивый и лучше всего исследованный молодой остаток образован сверхновой SN 1987 A в Большом Магеллановом Облаке, вспыхнувшей в 1987 г. Другие хорошо известные остатки сверхновых, это Крабовидная туманность , остаток относительно недавнего взрыва (1054 год), остаток сверхновой Тихо (SN 1572) , получившей имя в честь Тихо Браге, который наблюдал и зафиксировал её первоначальную яркость сразу после вспышки в 1572 г., а также остаток сверхновой Кеплера (SN 1604) , названной в честь Иоганна Кеплера.

4 .2 Тёмная туманность

Тёмная тумамнность -- тип межзвёздного облака, настолько плотного, что оно поглощает видимый свет, исходящий от эмиссионных или отражательных туманностей (как, например, туманность Конская Голова ) или звёзд (например, туманность Угольный Мешок ), находящихся позади неё.

Поглощают свет частицы межзвёздной пыли, находящиеся в наиболее холодных и плотных частях молекулярных облаков. Скопления и большие комплексы тёмных туманностей связаны с гигантскими молекулярными облаками (ГМО). Изолированные тёмные туманности чаще всего бывают глобулами Бока.

Такие облака обладают очень неправильной формой: у них нет чётко очерченных границ, иногда они приобретают закрученные змеевидные образы. Самые большие тёмные туманности видны невооружённым глазом, они выступают как куски черноты на фоне яркого Млечного Пути.

Во внутренних частях тёмных туманностей часто протекают активные процессы: например, рождение звёзд или мазерное излучение.

5. ИЗЛУЧЕНИЕ

Звёздный ветер -- процесс истечения вещества из звёзд в межзвёздное пространство.

Вещество, из которого состоят звёзды, при определённых условиях может преодолевать их притяжение и выбрасываться в межзвёздное пространство. Это происходит в том случае, если частица в атмосфере звезды разгоняется до скорости, превышающей вторую космическую скорость для данной звезды. Фактически, скорости частиц, из которых состоит звёздный ветер, составляют сотни километров в секунду.

Звёздный ветер может содержать как заряженные частицы, так и нейтральные.

Звёздный ветер -- постоянно происходящий процесс, который приводит к снижению массы звезды. Количественно этот процесс может быть охарактеризован как количество (масса) вещества, которое теряет звезда в единицу времени.

Звёздный ветер может играть важную роль в звёздной эволюции: так как в результате этого процесса происходит уменьшение массы звезды, то от его интенсивности зависит срок жизни звезды.

Звёздный ветер является способом переноса вещества на значительные расстояния в космосе. Помимо того, что он сам по себе состоит из вещества, истекающего из звёзд, он может воздействовать на окружающее межзвёздное вещество, передавая ему часть своей кинетической энергии. Так, форма эмиссионной туманности NGC 7635 «Пузырь» образовалась в результате такого воздействия.

В случае истечения вещества от нескольких близко расположенных звёзд, дополненного воздействием излучения этих звёзд возможна конденсация межзвёздного вещества с последующим звездообразованием.

При активном звёздном ветре количество выбрасываемого вещества может оказаться достаточным для формирования планетарной туманности.

6. ЭВОЛЮЦИЯ МЕЖЗВЁЗДНОЙ СРЕДЫ

Эволюция межзвёздной среды, а если быть точнее межзвёздного газа, тесно связана с химической эволюцией всей Галактики. Казалось бы, все просто: звезды поглощают газ, а после выбрасывают его обратно, обогащая его продуктами ядерного горения -- тяжёлыми элементами, -- таким образом металличность должна постепенно возрастать.

Теория Большого взрыва предсказывает, что в ходе первичного нуклеосинтеза образовались водород, гелий, дейтерий, литий и другие лёгкие ядра, которые раскалываются ещё на треке Хаяши или стадии протозвёзды. Иными словами, мы должны наблюдать долгоживущие G-карлики с нулевой металличностью. Но таковых в Галактике не найдено, более того, большинство из них имеют почти солнечную металличность. По косвенным данным, можно судить, что что-то подобное и в других галактиках. На данный момент вопрос остаётся открытым и ждёт своего решения.

В первичном межзвёздном газе не было и пыли. Как сейчас считается, пылинки образуются на поверхности старых холодных звёзд и покидают её вместе с истекающим веществом.

ЗАКЛЮЧЕНИЕ

Изучение такой сложной системы как «звезды - межзвездная среда» оказалось очень сложной астрофизической задачей, особенно если учесть, что общая масса межзвездной среды в Галактике и ее химический состав медленно изменяются под действием различных факторов. Поэтому можно сказать, что в межзвездной среде отражена вся история нашей звездной системы продолжительностью в миллиарды лет.

СПИСОК ИСТОЧНИКОВ

1) Материалы, взятые с сайта www.wikipedia.org

2) Материалы, взятые с сайта www.krugosvet.ru

3) Материалы, взятые с сайта www.bse.sci-lib.com

4) Материалы, взятые с сайта www.dic.academic.ru

Размещено на Allbest.ru

Подобные документы

    Туманность как участок межзвездной среды, выделяющейся своим излучением или поглощением излучения на общем фоне неба, ее разновидности и формы: эмиссионная, остатки сверхновых. История возникновения и развития некоторых туманностей: Орел, Песочные часы.

    презентация , добавлен 11.10.2012

    Пыль, газ и плазма как основные составляющие туманности. Классификация туманностей, характеристика их основных видов. Особенности строения диффузных, отражательных, эмиссионных, темных и планетарных туманностей. Формирование остатка сверхновой звезды.

    презентация , добавлен 20.12.2015

    Описание явлений туманности и солнечной активности. Изучение галактических, солнечных и космических лучей, способы их регистрации. Свойства межзвездного магнитного поля. Особенности пространственного распределения галактик. Идеи о расширении Вселенной.

    краткое изложение , добавлен 06.01.2012

    Звездное ядро как центральная, компактная область Галактики. Основные элементы структуры Галактики. Рассеянный и шаровой тип скоплений. Характеристика межзвездного газа. Общее понятие про светлые газовые туманности. Планетарные, темные туманности.

    презентация , добавлен 28.09.2011

    Космогония как наука, изучающая происхождение и развитие небесных тел. Сущность гипотезы Джинса. Туманность, рождение Солнца. Основные этапы процесса превращения частиц туманности в планеты: слипание частиц; разогревание; вулканическая деятельность.

    реферат , добавлен 20.06.2011

    Космические аппараты исследования природных ресурсов Земли и контроля окружающей среды серии Ресурс-Ф. Основные технические характеристики КА Ресурс-Ф1 и фотоаппаратуры. Космические аппараты космической медицины и биологии КА Бион, материаловедения Фотон.

    реферат , добавлен 06.08.2010

    Звёздная эволюция - изменения звезды в течение её жизни. Термоядерный синтез и рождение звезд; планетарная туманность, протозвезды. Характеристика молодых звезд, их зрелость, поздние годы, гибель. Нейтронные звезды (пульсары), белые карлики, черные дыры.

    презентация , добавлен 10.05.2012

    Стадии формирования Солнечной системы. Состав среды протопланетного диска Солнца, исследование его эволюции с помощью численной двумерной газодинамической модели, которая соответствует осесимметричному движению газовой среды в гравитационном поле.

    курсовая работа , добавлен 29.05.2012

    Характеристика звезд. Звезды в космическом пространстве. Звезда – плазменный шар. Динамика звездных процессов. Солнечная система. Межзвездная среда. Понятие звездной эволюции. Процесс звездообразования. Звезда как динамическая саморегулирующаяся система.

    реферат , добавлен 17.10.2008

    Восьмая планета от Солнца. Некоторые параметры планеты Нептун. Химический состав, физические условия, строение, атмосфера. Температура поверхностных областей. Спутники Нептуна, их размеры, характеристики, история открытий. Кольца Нептуна, магнитное поле.

«Вопросы по астрономии» - Передача изображения. М.В. Ломоносов. Какие астрономические знаки изображены на флагах. Сатурн. Каккони в Моррисон предложили очень изящную идею. Разгадайте кроссворд. Юпитер. Планета Солнечной системы имеет наименьшие размеры. Этот физический параметр любого тела равен нулю. 4 октября 1957 г с помощью мощной ракеты развил скорость 28 000 км/ч.

«Астрономическая конференция» - XI конференция “Физика Галактики” проходила на турбазе “Хрустальная” в живописных окрестностях Свердловска. Незабываемы встречи с В.С.Осканяном, Н.С.Черных и др. Благоприятные возможности для оценки и самооценки научной и профессиональной подготовки специалистов различными вузами. П.Е.Захарова Уральский государственный университет.

«Методы астрономии» - Излучение в радиолиниях. Вспомогательные инструменты и методы астрономии. Внегалактические исследования. Т. Метьюз и А. Сендидж. Наблюдательные основания. Теория радиальных пульсаций. Хендрик ван де Хюлст. Внегалактическая радиоастрономия. Роберт Трюмплер. Солнечные вспышки. И.С. Шкловский. Б.В. Кукаркин.

«Астрофизика» - Открытие Урана. Первые измерения параллаксов. Мы получили совсем другую картину мира. Снимки Хаббла. Неожиданное открытие. Как это работает. Какая экзопланета была открыта первой. Открытие раздвинуло границы Солнечной системы. Открытие межзвездной среды. Впервые надежно был задан масштаб межзвездных расстояний.

«Галактические космические лучи» - Магнитосфера Земли. Наземные установки. Пример оптического детектора. История открытия космических лучей. Радиация. Частицы. Бруно Росси. Спутники. Разрядка электроскопа. Солнечный протуберанец. Первые научные гипотезы. Космические лучи. Регистрация ШАЛ на земле. США. Эксперименты. Скобельцын. Результаты измерений.

«Космические лучи» - Учебный процесс. Цетральная часть. Berkeley Lab Cosmic Ray Detector. Сцинтилляционный детектор. Космические лучи. Переизлучатели. Ливневая установка. Сцинтилляционная сборка. Термостабилизация в действии. Электроника детектора. Методика регистрации ШАЛ. Коммуникации. Схема сцинтилляционной сборки детектора.

Всего в теме 23 презентации

Вредители